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ABSTRACT 
This presentation shows the process a team should use to initiate a design project based on the needs of the 

customer.  The VRS project supports the future integration and development needs of four combat platforms 
(Abrams, AMPV, Bradley, and Stryker) and TARDEC’s PM CVP.  For this presentation, and to simplify the 
explanation, the TRADOC developed capability for Silent Watch is used to demonstrate the processes of analyzing 
Capability Description Documents (CDD), creating and deriving good requirements, allocating them to specific 
functions and activities, describing those activities to the lowest level, designing, building, and eventually testing. 

 
INTRODUCTION 

According to the International Council on Systems 
Engineering (INCOSE), “Systems Engineering is an 
interdisciplinary approach and means to enable the 
realization of successful systems. It focuses on defining 
customer needs and required functionality early in the 
development cycle, documenting requirements, then 
proceeding with design synthesis and system validation 
while considering the complete problem”.  “Systems 
Engineering integrates all the disciplines and specialty 
groups into a team effort forming a structured development 
process that proceeds from concept to production to 
operation.”  This definition, describing a structured and 
disciplined process, is a proactive approach clearly intended 
to begin as soon as possible.  However, as the author has 
experienced both in industry and in the Government 
lifecycle, the earlier the “product” is in its conception the 
less likely structured processes will be used in its 
development.   

As quality tools and methodologies develop, prove 
themselves through piloting, and establish themselves in 
industry and Government processes (often in that order), 
they find themselves beginning near the end of those 
processes.  Or more simply, they start too late, being initially 
deployed in efforts where there might have been significant 
benefit in employing them earlier and more proactively.  As 
a result, time and resources are often wasted to do rework or 
eliminate a defect through the identification of root cause.  

This implies problems exist, which further implies that 
enough work has been done to have problems.  Reactive 
actions late in programs have less positive impact on cost, 
schedule, and performance than proactive prevention 
actions.  In fact, proactive action often provides opportunity 
to create the most optimized performance at the overall best 
cost (when compared with the added cost of later failure) 
and in the least amount of time (when compared with the 
time wasted to do rework). 

TARDEC, and in particular its Research & Technology 
Integration (RTI) group, has recently embarked on a 
Systems Engineering (SE) approach to ensure that its 
Combat Vehicle Prototyping (CVP) project culminates in the 
realization of a successful system.  For this project multiple 
subsystems are being developed simultaneously by different 
entities within RTI, each of which contribute to the system 
as a whole.  VEA is responsible for producing the data 
network and power management architecture for this 
vehicle, and along with the other subsystems will transition a 
product to meet the overall CVP project delivery date.  VEA 
is trying to “build the bench” in regard to proactively using 
SE early in the development cycle.  This presentation 
focusses on a real example of VEA using SE early, 
analyzing the needs of the customer, creating/deriving the 
requirements, synthesizing the design, and eventually testing 
and transitioning the product.  VEA is supporting its SE 
application with System Modeling Language (SysML) and 
many of the graphical representations in the presentation are 
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excerpts from the SysML modeling tool.  The presentation 
shows a complete thread of the process a team should use to 
initiate and complete a design project based on the needs of 
one or more customers. 

The VEA Research SIL project is the means for VEA to 
deliver the next generation power and network architecture 
and design to meet the needs of CVP and the other combat 
platforms whose needs were part of the original problem set.  

 
THE SYSTEMS ENGINEERING V MODEL 

The overall approach used throughout the project is an 
adaptation of the SE “V”.  The V model has proven itself 
successful as a guide to creating a product intended to satisfy 
a defined set of needs.  However, it is presented as a generic, 
high level process adaptable to many project types.  For each 
project, team members should discuss, interpret, and 
eventually agree about what the major steps of the V model 
mean specific to their project.  The very generic high level 
steps should be interpreted and given more project specific 
meaning.  The end goals of the project are probably key 
words in some of this less generic interpretation.  In a very 
preliminary way the beginning of the project schedule 
begins to take shape as some of the high level generic 
activities take on project language and a rudimentary 
translation takes place as shown in figure 1.    

 
 

Figure 1: VRS specific interpretation of SE “V” 
 

For the VRS project, a combined and common requirement 
set would be the first adaptation to the V.  Requirements 
Analysis meant creating one set of requirements from many 
sets of requirements.  Implementation meant acquiring the 
resources and building the laboratory that would house the 
development of the product and its later verification and 
validation.  Integration meant integrating components and 
subsystems into a combat vehicle test shell.  Finally 
Transition meant being ready to take the Test Readiness 

Level (TRL) from 5 to 6 by moving out of the test shell and 
into a vehicle demonstrator.      

 
REQUIREMENTS 

Requirements are the glue that bind the entire project 
together.  Their intent is to inform the design and the 
architecture both of the needs and the constraints.  A 
common approach to creating a requirement is as follows. 
Using original text from CDD, or other source document, 
identify language relative to a certain attribute.  Transform 
that language into a singular, testable, shall statement.  
These are the attributes of well written requirements. 

Some requirements may be deemed architecturally 
significant.  The difference between architecture and design 
is distinct in that architecture guides design, and not the 
other way around.  Architecture may be considered the set of 
rules to be followed while exercising design activities.  The 
design should adhere to the architecture and the 
architecturally specific requirements while striving to satisfy 
the greater number of performance related requirements.   

Traceability to the requirements as the product matures is 
critical.  Although more requirements may need to be 
derived to satisfy a higher level source requirements, there 
should never be any activity or function that does not trace 
back to a requirement.  In the end the goal is to satisfy only 
what was needed without scope creep or unjustified function 
or capability.  A partial example of a well-organized 
requirements database appears in figure 2. 

 

 
 

Figure 2: Source and derived requirements as part of a 
DOORS database. 

ALLOCATION OF REQUIREMENTS TO FUNCTIONS 
Requirements alone do not a vehicle (or architecture) 

make.  Requirements are fulfilled by functions, and 
functions are parts of larger capabilities, which stem from 
WBS elements.  Full traceability means that all the 
requirements eventually belong to at least one function.  To 
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help establish this, a functional hierarchy may be created 
through the use of a WBS.  After the major WBS elements 
are identified at level one and two, capabilities appear at 
level three, and functions at level four. 

A Function is the associated action(s) that a particular part 
of a system will perform in order to provide a Capability and 
support satisfying the Capability's associated system 
requirements.  Functions are decomposed and grouped by 
Capability. 

Checks and balances: There should never be a requirement 
that has no assignment to a Function (the requirement would 
never be fulfilled) and there should never be a Function that 
has no associated requirements (if so then why have this 
function if there is no “need”?).  Eventually all requirements, 
both source and derived, must be allocated to one or more 
Functions.  An update to the traceability database, DOORS 
or other manageable tool, is appropriate after the allocation. 

          
CREATING USE CASES 
Whether done in parallel while creating the functional 
hierarchy and allocating requirements to functions, or before 
or after it, analyzing the capabilities and the requirements 
from a user perspective results in identifying “use cases”.  A 
use case is a graphical representation of the user’s potential 
interaction with the system.  As with many of the diagrams 
shown in this example, use case diagrams can cascade from 
one to many to show the different levels of use. Figure 3 
illustrates the highest level of a use case, that which 
describes the broad use case “Operate Vehicle”. 

Similar to a WBS there are different levels of definition for 
use cases.  When appropriate use cases should be brought 
down to the lowest level through decomposition.  The 
highest level (for this ground vehicle example) is the use 
case called “1.0 Operate Vehicle”, comprised of eight 
smaller (but still broad) use cases. Since we want to 
eventually fulfill the function “Provide Silent Watch 
Power”, and thereby satisfy the requirements allocated to it, 
this function will have to have a place in this structure. A 
logical search through the secondary use cases under 
“Operate Vehicle” shows that “Provide Silent Watch Power” 
most likely belongs to the secondary use case “1.7 Protect 
Crew”. 

Continuing with traceability, all the secondary use cases 
are defined with their own diagrams which have the 
potential to identify even more defined use cases. Use cases 
should provide an eventual home for all the functions 
through the identification of activities (or scenarios).      

 
 

 
Figure 3: High level use case diagram 

 
CREATING ACTIVITY DIAGRAMS 

Eventually the lowest level use cases will result in the 
identification of activities (or scenarios).  A logical transition 
from use case to activity is best identified from the 
operational viewpoint.  In other words it is a determination 
of at what point it is appropriate to look into the “black box” 
that the user is “using” and define what is going on in there.  
For instance, the use case “1.7 Protect crew” is further 
defined by four more potential uses, one of which is “1.7.1 
Avoid detection”.  To avoid detection, the signature of the 
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platform will need to be managed. Here the use case 
hierarchy has finally been decomposed to a level where the 
activities within the “black box” that manage platform 
signature can be defined.  When use cases are broken down 
to the lowest level they result in the identification of many 
activities (also referred to as scenarios) which, from the user 
perspective, are the things going on in the “black box”.  
“1.7.1.1 Manage signature of platform” is such an activity 
that is low level enough to be described using an activity 
diagram.   

As with the use cases, activity diagrams start at a high 
level and may result in additional lower level diagrams that 
describe more detail.  Continuing with the ever important 
aspect of traceability, every function must appear in at least 
one activity diagram.    

An activity diagram uses swim lanes to show who is 
responsible for an action within an activity.  Each lane is 
owned by an ACTOR (a term to describe roles played by 
human users, external hardware, or other subjects) or a 
SUBSYSTEM.  Figure 4 shows the “Manage platform 
signature” activity diagram. 

 

 
Figure 4: Activity diagram for “Manage platform signature” 
 

Similar to the use case hierarchy, an activity diagram 
hierarchy most likely exists.  On a subsequent, lower level 
activity diagram, the function identified earlier as “Provide 
Silent Watch Power” finally has a home.   

Functions are allocated to subsystems, and those 
subsystems are responsible for making sure the design 
addresses the behavior and interfaces depicted in the 

diagrams and described in the requirements.  As the design 
matures it becomes necessary to dive deeper into detail.  
Subsystems need to create subsystem activity diagrams to 
more fully explain the activities they are responsible for.  In 
this example the Power Management subsystem would 
create a detailed activity diagram for Provide Silent Watch 
Power, an activity within their swim lane on the System 
level diagram.  Subsystem activity diagrams look very 
similar to System level activity diagrams but the swim lanes 
now depict the components or the sub-assemblies.  

Hierarchy continues to exist when appropriate.  Subsystem 
activity diagrams describe the activity of components.  
When those activities can be broken down further another 
set of diagrams should be created.  Component or sub-
assembly level activity diagrams are justified when further 
explanation of the component activities is possible.  Here 
swim lanes consist of hardware, firmware, or computer 
software considered Configuration Items (CI).  If that 
component is hardware (HW) then it is an HWCI.  If that 
HWCI is “smart”, meaning that it has the ability to process 
data and act accordingly based on the use of software or 
code, it is considered to also have an associated Computer 
Software (CS) or CSCI.  A single “smart” HWCI is likely to 
have multiple CSCIs. A CSCI may result in CSCI specific 
activity diagrams and the need for additional derivation of 
software requirements. 

To summarize the evolution of activity diagrams: 
Functions enable capabilities and requirements through the 
execution of activities. Starting at the System level, the 
activities of subsystems are defined.  Subsystem level 
activities are broken down into Component level activities 
performed by hardware and software.  This level of 
definition is now approaching the level that can be used to 
implement software code. 

 
CONFIGURATION ITEMS 

HWCIs and CSCIs are described by different methods.  
HWCIs that do not have associated CSCIs are often 
described using CAD drawings, specifications, or other 
graphical representation methods. CSCI require further 
description of the logical activity with another activity 
diagram and it is not uncommon to derive software 
requirements at this time. 

As stated earlier, smart HWCI will likely have multiple 
associated CSCI.  In turn each CSCI is comprised of one or 
more Computer Software Components (CSC).  A CSC is a 
grouping or aggregate of two or more Software Units (SU) 
or Computer Software Units (CSU).  The SU is the smallest 
subdivision of a CSCI for the purposes of Engineering or 
Configuration Management.  SUs are typically separately 
compiled pieces of code.  

It is acceptable to have the same CSC appear in different 
CSCI and the same SU be reused in different CSC.  It is also 
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acceptable to define CI as whatever is manageable from a 
deployment perspective. Configuration Management may 
suggest any combination of SU, CSC, SW, and HW to be a 
CI.     

 
PHYSICAL DESIGN 

In parallel to the creation of the activity diagrams, the 
physical design should take shape.  Activity diagrams do not 
fully populate all the necessary information to describe the 
design, but they aid in supplying the subsystems and the 
actors and form the basis for discussion and evolution of the 
physical design.  Physical designs are described by using 
block definition diagrams and internal block diagrams.  

The BLOCK DEFINITION DIAGRAM describes the 
properties of each block and the relationships between them.  
The blocks themselves may represent subsystems or similar 
items that have a relationship to one another. 

The INTERNAL BLOCK DIAGRAMS describe the 
interfaces and flows between the blocks.  These interfaces 
are well defined in a good design and are the first description 
of how everything will get put together and work together.  
It is the first graphical representation of a tangible product. 

Interface Control Documents (ICD) add further detail by 
describing the interface(s) between subsystems (or blocks), 
or the interface(s) to the system.  ICD may get very detailed 
if appropriate by describing even lower level interfaces 
between the lowest physical elements.  
 
VERIFICATION AND VALIDATION 

Eventually Verification “that the product was built right”, 
and Validation that “this is the right solution to the 
problem”, is possible.  If both are successful the product 
may finally transition.  Testing in Verification and 
Validation begins with the lowest levels of logic and 
hardware functions, Verifying that the design fulfills system 
level requirements, and Validating that it meets customer 
needs. 

The hierarchy of testing: 
1. Development testing – provide data showing that 

logical paths and components perform as intended 
and that the functions and activities of the 
subsystems can be fulfilled.  Development testing is 
often simple and specific with the intent that 
developers and designers can verify that they are 
“on the right path”.  Development testing provides 
confidence that the lowest level of activity is 
happening as intended.  “Passing” and “failing” test 
steps provide direction in development testing. 

2. Component and Subsystem testing – provide data 
showing that components address component level 
requirements and subsystems address subsystem 
level requirements.   In both cases the intended 

behavior of the components and the subsystems 
relative to the activity diagrams is confirmed. 

3. System testing – provide data showing that as a 
final roll up from HW, SW, components, and 
subsystems that in combination the system itself 
fulfills the intended functions and meets the 
original system level requirements identified at the 
beginning of the project. 

For each level, from Component to System, Verification 
(“is it built right?”) can take four typical forms: 

1. Demonstration – visual observations are the 
primary means of Verification.  Use when 
quantitative assurance is not required for 
Verification of the requirements. 

2. Inspection – visual inspection of equipment and 
evaluation of drawings and other pertinent design 
data Verifies conformance. 

3. Analysis – the use of analytical techniques or 
computer models to explain behavior or 
performance. 

4. Test – an activity which provides data relative to 
function and operation in an environment whose 
conditions are completely controlled and traceable.  
Evaluation of the test data includes comparison 
against requirements.  Test is done when other 
methods of Verification cannot deliver an 
acceptable level of confidence or if testing is shown 
to be the most cost effective method. 

   In regard to Validation (“is this the right solution?”): 
• Validation happens (most often) at the end of 

development but can be used early to find issues if 
work products and relevant stakeholders are 
engaged. 

• It is a process of establishing evidence that provides 
a high degree of assurance that a product, service, 
or system meets the needs of the customer. 

• Can utilize methods similar to verification. 
Although both may be performed this way, Validation is 

almost always performed by a “disinterested, independent 
third party”.  Third party Validation avoids possible bias and 
allows for the fairest evaluation of a product.  Hence the use 
of the familiar acronym for Verification and Validation, 
I(ndependent) V&V, or IV&V.  

It is possible that a product passes when verified but fails 
when validated. For instance if a product is built per the 
specifications but the specifications themselves fail to 
address the user’s needs, the product is not validated.  
Verification and Validation are often (incorrectly) used 
interchangeably and can be difficult to differentiate from 
each other.  It is best to always remember that the difference 
is Verification asks “Did we build it right? Did we build to 
specification?” and is measured against the requirements, 
while Validation asks “Did we build the right thing? Is this 
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the solution to the problem?” and is measured against the 
needs of the customer.  In order to transition a product to the 
next TRL, or to field it, BOTH Verification and Validation 
must be successful. 

 
SUMMARY 

Success in design is dependent upon being able to identify 
what problem is to be solved through proper scoping.  
Understanding the needs leads to the creation of 
requirements and the beginning of the traceability line.  By 
eventual allocation of requirements to functions, and those 
functions finding their way into activities via use cases, the 
lowest level activities identify configuration items which 
may be hardware or software, or even “smart” hardware.  
Low level activity descriptions aid in supplying the 
subsystems, components, sub-assemblies and actors (users) 

and form the basis for discussion and evolution of the 
physical design.  Block definition diagrams and internal 
block diagrams allow for Interface Control Documents to 
add further detail by describing the interface(s) between 
subsystems (or blocks), or the interface(s) to the system.  
Beginning at the lowest level testing is used to both Verify 
and Validate the design, both against the requirements and 
the problem to be solved, respectively.   

 
 

 
REFERENCES 

[1] www.incose.org 

[2] www.softwaretesting.com 

[3] www.dau.mil 

 


