
 UNCLASSIFIED: Distribution Statement A. Approved for public release

2015 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 4-6, 2015 - NOVI, MICHIGAN

THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Gregor A. Ratajczak
VRS Project Manager

Vehicle Electronics and
Architecture

TARDEC
Warren, MI

 Keith MacFadyen
VRS Chief Engineer

DCS
Warren, MI

ABSTRACT
This presentation shows the process a team should use to initiate a design project based on the needs of the

customer. The VRS project supports the future integration and development needs of four combat platforms
(Abrams, AMPV, Bradley, and Stryker) and TARDEC’s PM CVP. For this presentation, and to simplify the
explanation, the TRADOC developed capability for Silent Watch is used to demonstrate the processes of analyzing
Capability Description Documents (CDD), creating and deriving good requirements, allocating them to specific
functions and activities, describing those activities to the lowest level, designing, building, and eventually testing.

INTRODUCTION

According to the International Council on Systems
Engineering (INCOSE), “Systems Engineering is an
interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining
customer needs and required functionality early in the
development cycle, documenting requirements, then
proceeding with design synthesis and system validation
while considering the complete problem”. “Systems
Engineering integrates all the disciplines and specialty
groups into a team effort forming a structured development
process that proceeds from concept to production to
operation.” This definition, describing a structured and
disciplined process, is a proactive approach clearly intended
to begin as soon as possible. However, as the author has
experienced both in industry and in the Government
lifecycle, the earlier the “product” is in its conception the
less likely structured processes will be used in its
development.

As quality tools and methodologies develop, prove
themselves through piloting, and establish themselves in
industry and Government processes (often in that order),
they find themselves beginning near the end of those
processes. Or more simply, they start too late, being initially
deployed in efforts where there might have been significant
benefit in employing them earlier and more proactively. As
a result, time and resources are often wasted to do rework or
eliminate a defect through the identification of root cause.

This implies problems exist, which further implies that
enough work has been done to have problems. Reactive
actions late in programs have less positive impact on cost,
schedule, and performance than proactive prevention
actions. In fact, proactive action often provides opportunity
to create the most optimized performance at the overall best
cost (when compared with the added cost of later failure)
and in the least amount of time (when compared with the
time wasted to do rework).

TARDEC, and in particular its Research & Technology
Integration (RTI) group, has recently embarked on a
Systems Engineering (SE) approach to ensure that its
Combat Vehicle Prototyping (CVP) project culminates in the
realization of a successful system. For this project multiple
subsystems are being developed simultaneously by different
entities within RTI, each of which contribute to the system
as a whole. VEA is responsible for producing the data
network and power management architecture for this
vehicle, and along with the other subsystems will transition a
product to meet the overall CVP project delivery date. VEA
is trying to “build the bench” in regard to proactively using
SE early in the development cycle. This presentation
focusses on a real example of VEA using SE early,
analyzing the needs of the customer, creating/deriving the
requirements, synthesizing the design, and eventually testing
and transitioning the product. VEA is supporting its SE
application with System Modeling Language (SysML) and
many of the graphical representations in the presentation are

UNSLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 UNCLASSIFED
 THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Page 2 of 6

excerpts from the SysML modeling tool. The presentation
shows a complete thread of the process a team should use to
initiate and complete a design project based on the needs of
one or more customers.

The VEA Research SIL project is the means for VEA to
deliver the next generation power and network architecture
and design to meet the needs of CVP and the other combat
platforms whose needs were part of the original problem set.

THE SYSTEMS ENGINEERING V MODEL

The overall approach used throughout the project is an
adaptation of the SE “V”. The V model has proven itself
successful as a guide to creating a product intended to satisfy
a defined set of needs. However, it is presented as a generic,
high level process adaptable to many project types. For each
project, team members should discuss, interpret, and
eventually agree about what the major steps of the V model
mean specific to their project. The very generic high level
steps should be interpreted and given more project specific
meaning. The end goals of the project are probably key
words in some of this less generic interpretation. In a very
preliminary way the beginning of the project schedule
begins to take shape as some of the high level generic
activities take on project language and a rudimentary
translation takes place as shown in figure 1.

Figure 1: VRS specific interpretation of SE “V”

For the VRS project, a combined and common requirement
set would be the first adaptation to the V. Requirements
Analysis meant creating one set of requirements from many
sets of requirements. Implementation meant acquiring the
resources and building the laboratory that would house the
development of the product and its later verification and
validation. Integration meant integrating components and
subsystems into a combat vehicle test shell. Finally
Transition meant being ready to take the Test Readiness

Level (TRL) from 5 to 6 by moving out of the test shell and
into a vehicle demonstrator.

REQUIREMENTS

Requirements are the glue that bind the entire project
together. Their intent is to inform the design and the
architecture both of the needs and the constraints. A
common approach to creating a requirement is as follows.
Using original text from CDD, or other source document,
identify language relative to a certain attribute. Transform
that language into a singular, testable, shall statement.
These are the attributes of well written requirements.

Some requirements may be deemed architecturally
significant. The difference between architecture and design
is distinct in that architecture guides design, and not the
other way around. Architecture may be considered the set of
rules to be followed while exercising design activities. The
design should adhere to the architecture and the
architecturally specific requirements while striving to satisfy
the greater number of performance related requirements.

Traceability to the requirements as the product matures is
critical. Although more requirements may need to be
derived to satisfy a higher level source requirements, there
should never be any activity or function that does not trace
back to a requirement. In the end the goal is to satisfy only
what was needed without scope creep or unjustified function
or capability. A partial example of a well-organized
requirements database appears in figure 2.

Figure 2: Source and derived requirements as part of a
DOORS database.

ALLOCATION OF REQUIREMENTS TO FUNCTIONS
Requirements alone do not a vehicle (or architecture)

make. Requirements are fulfilled by functions, and
functions are parts of larger capabilities, which stem from
WBS elements. Full traceability means that all the
requirements eventually belong to at least one function. To

UNSLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 UNCLASSIFED
 THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Page 3 of 6

help establish this, a functional hierarchy may be created
through the use of a WBS. After the major WBS elements
are identified at level one and two, capabilities appear at
level three, and functions at level four.

A Function is the associated action(s) that a particular part
of a system will perform in order to provide a Capability and
support satisfying the Capability's associated system
requirements. Functions are decomposed and grouped by
Capability.

Checks and balances: There should never be a requirement
that has no assignment to a Function (the requirement would
never be fulfilled) and there should never be a Function that
has no associated requirements (if so then why have this
function if there is no “need”?). Eventually all requirements,
both source and derived, must be allocated to one or more
Functions. An update to the traceability database, DOORS
or other manageable tool, is appropriate after the allocation.

CREATING USE CASES
Whether done in parallel while creating the functional
hierarchy and allocating requirements to functions, or before
or after it, analyzing the capabilities and the requirements
from a user perspective results in identifying “use cases”. A
use case is a graphical representation of the user’s potential
interaction with the system. As with many of the diagrams
shown in this example, use case diagrams can cascade from
one to many to show the different levels of use. Figure 3
illustrates the highest level of a use case, that which
describes the broad use case “Operate Vehicle”.

Similar to a WBS there are different levels of definition for
use cases. When appropriate use cases should be brought
down to the lowest level through decomposition. The
highest level (for this ground vehicle example) is the use
case called “1.0 Operate Vehicle”, comprised of eight
smaller (but still broad) use cases. Since we want to
eventually fulfill the function “Provide Silent Watch
Power”, and thereby satisfy the requirements allocated to it,
this function will have to have a place in this structure. A
logical search through the secondary use cases under
“Operate Vehicle” shows that “Provide Silent Watch Power”
most likely belongs to the secondary use case “1.7 Protect
Crew”.

Continuing with traceability, all the secondary use cases
are defined with their own diagrams which have the
potential to identify even more defined use cases. Use cases
should provide an eventual home for all the functions
through the identification of activities (or scenarios).

Figure 3: High level use case diagram

CREATING ACTIVITY DIAGRAMS

Eventually the lowest level use cases will result in the
identification of activities (or scenarios). A logical transition
from use case to activity is best identified from the
operational viewpoint. In other words it is a determination
of at what point it is appropriate to look into the “black box”
that the user is “using” and define what is going on in there.
For instance, the use case “1.7 Protect crew” is further
defined by four more potential uses, one of which is “1.7.1
Avoid detection”. To avoid detection, the signature of the

UNSLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 UNCLASSIFED
 THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Page 4 of 6

platform will need to be managed. Here the use case
hierarchy has finally been decomposed to a level where the
activities within the “black box” that manage platform
signature can be defined. When use cases are broken down
to the lowest level they result in the identification of many
activities (also referred to as scenarios) which, from the user
perspective, are the things going on in the “black box”.
“1.7.1.1 Manage signature of platform” is such an activity
that is low level enough to be described using an activity
diagram.

As with the use cases, activity diagrams start at a high
level and may result in additional lower level diagrams that
describe more detail. Continuing with the ever important
aspect of traceability, every function must appear in at least
one activity diagram.

An activity diagram uses swim lanes to show who is
responsible for an action within an activity. Each lane is
owned by an ACTOR (a term to describe roles played by
human users, external hardware, or other subjects) or a
SUBSYSTEM. Figure 4 shows the “Manage platform
signature” activity diagram.

Figure 4: Activity diagram for “Manage platform signature”

Similar to the use case hierarchy, an activity diagram
hierarchy most likely exists. On a subsequent, lower level
activity diagram, the function identified earlier as “Provide
Silent Watch Power” finally has a home.

Functions are allocated to subsystems, and those
subsystems are responsible for making sure the design
addresses the behavior and interfaces depicted in the

diagrams and described in the requirements. As the design
matures it becomes necessary to dive deeper into detail.
Subsystems need to create subsystem activity diagrams to
more fully explain the activities they are responsible for. In
this example the Power Management subsystem would
create a detailed activity diagram for Provide Silent Watch
Power, an activity within their swim lane on the System
level diagram. Subsystem activity diagrams look very
similar to System level activity diagrams but the swim lanes
now depict the components or the sub-assemblies.

Hierarchy continues to exist when appropriate. Subsystem
activity diagrams describe the activity of components.
When those activities can be broken down further another
set of diagrams should be created. Component or sub-
assembly level activity diagrams are justified when further
explanation of the component activities is possible. Here
swim lanes consist of hardware, firmware, or computer
software considered Configuration Items (CI). If that
component is hardware (HW) then it is an HWCI. If that
HWCI is “smart”, meaning that it has the ability to process
data and act accordingly based on the use of software or
code, it is considered to also have an associated Computer
Software (CS) or CSCI. A single “smart” HWCI is likely to
have multiple CSCIs. A CSCI may result in CSCI specific
activity diagrams and the need for additional derivation of
software requirements.

To summarize the evolution of activity diagrams:
Functions enable capabilities and requirements through the
execution of activities. Starting at the System level, the
activities of subsystems are defined. Subsystem level
activities are broken down into Component level activities
performed by hardware and software. This level of
definition is now approaching the level that can be used to
implement software code.

CONFIGURATION ITEMS

HWCIs and CSCIs are described by different methods.
HWCIs that do not have associated CSCIs are often
described using CAD drawings, specifications, or other
graphical representation methods. CSCI require further
description of the logical activity with another activity
diagram and it is not uncommon to derive software
requirements at this time.

As stated earlier, smart HWCI will likely have multiple
associated CSCI. In turn each CSCI is comprised of one or
more Computer Software Components (CSC). A CSC is a
grouping or aggregate of two or more Software Units (SU)
or Computer Software Units (CSU). The SU is the smallest
subdivision of a CSCI for the purposes of Engineering or
Configuration Management. SUs are typically separately
compiled pieces of code.

It is acceptable to have the same CSC appear in different
CSCI and the same SU be reused in different CSC. It is also

UNSLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 UNCLASSIFED
 THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Page 5 of 6

acceptable to define CI as whatever is manageable from a
deployment perspective. Configuration Management may
suggest any combination of SU, CSC, SW, and HW to be a
CI.

PHYSICAL DESIGN

In parallel to the creation of the activity diagrams, the
physical design should take shape. Activity diagrams do not
fully populate all the necessary information to describe the
design, but they aid in supplying the subsystems and the
actors and form the basis for discussion and evolution of the
physical design. Physical designs are described by using
block definition diagrams and internal block diagrams.

The BLOCK DEFINITION DIAGRAM describes the
properties of each block and the relationships between them.
The blocks themselves may represent subsystems or similar
items that have a relationship to one another.

The INTERNAL BLOCK DIAGRAMS describe the
interfaces and flows between the blocks. These interfaces
are well defined in a good design and are the first description
of how everything will get put together and work together.
It is the first graphical representation of a tangible product.

Interface Control Documents (ICD) add further detail by
describing the interface(s) between subsystems (or blocks),
or the interface(s) to the system. ICD may get very detailed
if appropriate by describing even lower level interfaces
between the lowest physical elements.

VERIFICATION AND VALIDATION

Eventually Verification “that the product was built right”,
and Validation that “this is the right solution to the
problem”, is possible. If both are successful the product
may finally transition. Testing in Verification and
Validation begins with the lowest levels of logic and
hardware functions, Verifying that the design fulfills system
level requirements, and Validating that it meets customer
needs.

The hierarchy of testing:
1. Development testing – provide data showing that

logical paths and components perform as intended
and that the functions and activities of the
subsystems can be fulfilled. Development testing is
often simple and specific with the intent that
developers and designers can verify that they are
“on the right path”. Development testing provides
confidence that the lowest level of activity is
happening as intended. “Passing” and “failing” test
steps provide direction in development testing.

2. Component and Subsystem testing – provide data
showing that components address component level
requirements and subsystems address subsystem
level requirements. In both cases the intended

behavior of the components and the subsystems
relative to the activity diagrams is confirmed.

3. System testing – provide data showing that as a
final roll up from HW, SW, components, and
subsystems that in combination the system itself
fulfills the intended functions and meets the
original system level requirements identified at the
beginning of the project.

For each level, from Component to System, Verification
(“is it built right?”) can take four typical forms:

1. Demonstration – visual observations are the
primary means of Verification. Use when
quantitative assurance is not required for
Verification of the requirements.

2. Inspection – visual inspection of equipment and
evaluation of drawings and other pertinent design
data Verifies conformance.

3. Analysis – the use of analytical techniques or
computer models to explain behavior or
performance.

4. Test – an activity which provides data relative to
function and operation in an environment whose
conditions are completely controlled and traceable.
Evaluation of the test data includes comparison
against requirements. Test is done when other
methods of Verification cannot deliver an
acceptable level of confidence or if testing is shown
to be the most cost effective method.

 In regard to Validation (“is this the right solution?”):
• Validation happens (most often) at the end of

development but can be used early to find issues if
work products and relevant stakeholders are
engaged.

• It is a process of establishing evidence that provides
a high degree of assurance that a product, service,
or system meets the needs of the customer.

• Can utilize methods similar to verification.
Although both may be performed this way, Validation is

almost always performed by a “disinterested, independent
third party”. Third party Validation avoids possible bias and
allows for the fairest evaluation of a product. Hence the use
of the familiar acronym for Verification and Validation,
I(ndependent) V&V, or IV&V.

It is possible that a product passes when verified but fails
when validated. For instance if a product is built per the
specifications but the specifications themselves fail to
address the user’s needs, the product is not validated.
Verification and Validation are often (incorrectly) used
interchangeably and can be difficult to differentiate from
each other. It is best to always remember that the difference
is Verification asks “Did we build it right? Did we build to
specification?” and is measured against the requirements,
while Validation asks “Did we build the right thing? Is this

UNSLASSIFIED
Proceedings of the 2015 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

 UNCLASSIFED
 THE SYSTEMS ENGINEERING THREAD: FROM CDD TO TRANSITION

Page 6 of 6

the solution to the problem?” and is measured against the
needs of the customer. In order to transition a product to the
next TRL, or to field it, BOTH Verification and Validation
must be successful.

SUMMARY

Success in design is dependent upon being able to identify
what problem is to be solved through proper scoping.
Understanding the needs leads to the creation of
requirements and the beginning of the traceability line. By
eventual allocation of requirements to functions, and those
functions finding their way into activities via use cases, the
lowest level activities identify configuration items which
may be hardware or software, or even “smart” hardware.
Low level activity descriptions aid in supplying the
subsystems, components, sub-assemblies and actors (users)

and form the basis for discussion and evolution of the
physical design. Block definition diagrams and internal
block diagrams allow for Interface Control Documents to
add further detail by describing the interface(s) between
subsystems (or blocks), or the interface(s) to the system.
Beginning at the lowest level testing is used to both Verify
and Validate the design, both against the requirements and
the problem to be solved, respectively.

REFERENCES

[1] www.incose.org

[2] www.softwaretesting.com

[3] www.dau.mil

